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Abstract

The uniformity characteristics R of crystallographic orbits are
studied by the geometrical analysis of the fundamental regions
for the corresponding space groups. It is shown that R is no
more than the diameter of a fundamental region. On this basis,
the upper bounds for R values of the orbits of cubic space
groups are determined with respect to the parameter a of the
cubic lattice.

Let E” be an n-dimensional Euclidean space with metric
dx,y) =[x —y)*1'"%,  where x=(x,,....x,), y=
i, ---»¥,) and E(n) is a group of all isometries in E".

Definition 1. Subgroup G of E(n) is called a space group if it
acts in E" discontinuously and has a compact fundamental
region F.

Definition 2. Let G be a space group in E”. A point set
{x|]x € E"} is called a crystallographic orbit O(G, x,) if for any
point x € {x} there exists an isometry g, g € G, such that
X=g- x

OG, xy) :=={xlx,=g-x, geG}.

Definition 3. A point set {x} in R" is called an (r, R) set if it
fulfils the following conditions:

(i) there exists a fixed real r, » > 0, such that for any two
points x;, x; € {x}, i #j, it is fulfilled that d(x;, x;) > r;

(ii) there exists a fixed real R, R = sup{R’}, R' > 0, where R’
is the radius of a sphere that can be embedded in E” and
contains no points from {x} in the interior. We call R the
uniformity characteristic of {x}.

(r, R) sets are also called Delone sets in honour of B. N.
Delone (Galiulin, 1980).

Because G is discontinuous, each crystallographic orbit
O(G, x,) is a discrete point set. Its » characteristic is equal to the
minimal distance between its points: r = inf{d(x;, x;)},
x;,x; € O(G, x,), i # j. For general orbits of most space groups,
we can choose the point x, such that » will be as small as
desired and, therefore, in this case r characteristic of O(G, x,)
does not depend on the type of group G.

It may be shown that each crystallographic orbit also has a
uniformity characteristic R, i.e. it is uniformly distributed in E".
In accordance with Schoenflies—Bieberbach’s theorem, each
space group G in £ has a normal translational subgroup T of
finite index and hence each crystallographic orbit O(G, x,) may
be described as the union of a finite number of equivalent
lattices, i.e. as a multilattice. Since each lattice is an (7, R) set,
O(G, x;) is also an (r, R) set. The uniformity characteristics R,
of a single lattice are usually used in calculating the Dirichlet
domain partitions on the whole crystallographic orbit (Engel,
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1986). The goal of this paper is to show that these estimates
may be reduced by the geometrical analysis of the correspond-
ing space group.

Let G be a space group and F; be one of its fundamental
regions. There are two important properties of F:

(i) there is no isometry g, g € G, such thaty, = g - y; for any
two points y;,y; € Fg, i #J;

(i) for any point y, € E”, there is a point y; € F such that
yi=25,8¢€6G.

The application of all the isometries of G to F; produces an
orbit O(G, Fg), which is a space partition because, for each
point y, y € E", there exists a region F; and an isometry g from
G such that y € Fg, F;; = g - Fg. Otherwise, the condition (ii)
mentioned above is not fulfilled.

We define a diameter diam F of fundamental region F; as a
least upper bound for the distances between their points:

diam F¢ := sup{d(y;,y))}, v,y € Fg.

Theorem 1. The uniformity characteristic R of crystal-
lographic orbit O(G, x;) is no more than the diameter diam F
of the corresponding space group G:

R < diam F,.

Proof. Let R > diam F, that is, R = diam Fg + ¢, £ > 0. We
consider a sphere S(y, R) in E”. For any centre y of the sphere
S(y, R), there exists a fundamental region Fg, Fg =g Fg,
g€G, such that ye F;. Since R > diamFg= R >
diam F; = Fg C S(v, R). That is, the sphere S(y, R) contains
in the interior at least one fundamental region F; from the orbit
O(G, F¢) and therefore it contains inside at least one point x,
from any orbit O(G, x,). Hence, R > d(x,, y) for any y, which is
in contradiction with condition (ii) of definition 3. For R =
diam F¢; (or R < diam F;), we can choose y and x, such that
d(x,,y) = diam F [d(x;,y) < diam F;] and therefore it may
appear that the sphere S(y, R) is empty with respect to the points
from O(G, x;,). The theorem is proved.

The uniformity characteristic R,,, of each cubic space group
in E? is determined relative to the value of the parameter a of
the cubic lattice. The fundamental regions for cubic groups
were found by Koch & Fischer (1974). These types are shown
in Fig. 1 in which their diameters are drawn as thick lines. The
designations of F; types are taken from Koch & Fischer (1974).
Near each vertex of F, its coordinates are indicated as integers
n, n x a/8. The lrugths of diam F; are given in Table. 1. It
must be noted tlat the fundamental regions 4/4/a, 4/4/d,
5/5/c and 8/6/a may have different coordinates of the same
comers for different space groups. For these types of F, the
second variant of vertices is given in square brackets and
denoted by * in Fig. 1 and Table 1. For most cubic groups,
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Koch & Fischer (1974) determined different possible variants of
F¢ to be chosen. In Table 1, the upper bounds R,,, for R values
are given, which are calculated from the minimal diam F. If
theorem 1 gives an estimate of R that is greater than R, for a
single lattice, in Table 1 the latter is given.

It can be seen from Table 1 that only for 15 cubic space
groups the upper bounds R,,,, determined from theorem | are
smaller than R;. The minimal bounds R,_,, are obtained for
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space groups la3d [R,, = a3'%/(4 x 2'/?)), Fd3c (R, =
a/(2 x 2'%)] and Fm3c (R, = a3'/2/4). The following values
are for a single F lattice (R, = a/2) and for a single / lattice
(R, = a5'/2/4). The maximal R, is for a single P lattice
(R, =a3'2)2).

The upper bounds R, for R values of O(G, x,) are exploited
in the theory of Dirichlet domain partitions on crystallographic
orbits (Engel, 1986). For this purpose, the R characteristics for
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Fig. 1. Fundamental regions of the cubic space groups with diameters drawn as thick lines.
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Table 1. Fundamental regions F, their diameters and the upper bounds R, for R values of the crystallographic orbits of cubic
space groups

Space group Fg diam Fgx a Ryxxa Space group Fg diam Fgx a Ry xa
P23 4/4/d 2112 3122 P4,32 6/6/a an'?/4 (10?4
F23 10/8/a 1/2 1/2 14,32 7/7/a 312 /(2 x 2'7%) 57274
5/5/b 17212 B
123 4/4/a 1 5124 P43m 4/4/a* 172 3122
5/5/c 31722
8/6/a 17212 _
P23 7/8/a an“?a (11)'7/4 Fa3m 4/4/b 1/2 1/2
12,3 5/5/c 31272 51274 143m 4/4/c 31272 51274
_ _ 5/5/b 1/2'72
Pm3 5/5/c 31272 31272 P43n 5/5/c 31272 17212
R ~ 8/6/a 172172
Pn3 4/4/a 1 17212 Fa3c 4/4/b 1/2 1/2
) 8/6/a 1/2'2 _ 4/4/d* 17212
Fm3 4/4/d* 17212 1/2 143d 10/8/a 1/2 1/2
Fd3 4/4/b 1/2 1/2 Pm3m 4/4/c 317272 317272
B 5/5/d 1/2 )
Im3 4/4/c 31272 517274 Pn3n 4/4/c 31272 17212
5/5/a 17212 5/5/a 17212
B ~ 5/5/b 172172
Pa3 5/5/c 317272 172172 Pm3n 5/5/a 172172 172172
) 8/6/a 17212 )
Ia3 5/5/a 17212 172 Pn3m 5/5/b 17212 17212
10/8/a 172 .
P432 4/4/a 1/2 31272 Fm3m 4/4/a* 1/2 172
5/5/c 31272 B
P4,32 8/6/a 17212 17212 Fm3c 4/4/a* 1/2 312/4
_ 5/5/c* 3424
F432 4/4/b 1/2 172 Fd3m 4/4/e 1/2 1/2
4/4/d* 1/2'2 )
F4,32 5/5/d 1/2 1/2 Fd3c 4/4/e 1/2 1/(2 x 2'/2)
_ 8/6/a* 1/(2 x 2172)
1432 5/5/a 17212 5274 Im3m 4/4/d* 172172 517274
5/5/b 17272 )
P4,32 6/6/a (11Y'7%/4 an'?a la3d 9/9/a 312 /(4 x 212y 312/(4 x 2'12)
single lattices are usually used. The use of smaller R, may be References
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