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Abstract 

The uniformity characteristics R of  crystallographic orbits are 
studied by the geometrical analysis of  the fundamental regions 
for the corresponding space groups. It is shown that R is no 
more than the diameter of  a fundamental region. On this basis, 
the upper bounds for R values of  the orbits of  cubic space 
groups are determined with respect to the parameter a of  the 
cubic lattice. 

Let E n be an n-dimensional Euclidean space with metric 
d(x,y) = [y~(x i -yi)2] 1/2, where x = (x I . . . . .  x~), y = 
(y¿ . . . . .  y~) and E(n) is a group of all isometries in E ~. 

Definition 1. Subgroup G of  E(n) is called a space group if it 
acts in E ~ discontinuously and has a compact fundamental 
region FG. 

Definition 2. Let G be a space group in E n. A point set 
{xlx ~ E ~ } is called a crystallographic orbit O(G, x0) if for any 
point x e {x} there exists an isometry g, g e G, such that 
x = g  .x 0" 

O(G, x0) :={xi lx  i = g .  x o, g ~ G}. 

Definition 3. A point set {x} in R" is called an (r, R) set if it 
fulfils the following conditions: 

(i) there exists a fixed real r, r > 0, such that for any two 
points x i, xj 6 {x}, i # j ,  it is fulfilled that d(x~, x )  > r; 

(ii) there exists a fixed real R, R = sup{R'}, R' > 0, where R' 
is the radius of  a sphere that can be embedded in E" and 
contains no points from {x} in the interior. We call R the 
uniformity characteristic of  {x}. 

(r, R) sets are also called Delone sets in honour of  B. N. 
Delone (Galiulin, 1980). 

Because G is discontinuous, each crystallographic orbit 
O(G, x0) is a discrete point set. Its r characteristic is equal to the 
minimal distance between its points: r=in f {d (x i ,  x)},  
x,, xj ~ O(G, x0), i # j .  For general orbits of  most space groups, 
we can choose the point x 0 such that r will be as small as 
desired and, therefore, in this case r characteristic of  O(G, x0) 
does not depend on the type of  group G. 

It may be shown that each crystallographic orbit also has a 
uniformity characteristic R, i.e. it is uniformly distributed in E ~. 
In accordance with Schoenflies-Bieberbach's theorem, each 
space group G in E ~ has a normal translational subgroup T of  
finite index and hence each crystallographic orbit O(G, x0) may 
be described as the union of  a finite number of  equivalent 
lattices, i.e. as a multilattice. Since each lattice is an (r, R) set, 
O(G, x0) is also an (r, R) set. The uniformity characteristics R L 
of  a single lattice are usually used in calculating the Dirichlet 
domain partitions on the whole crystallographic orbit (Engel, 

1986). The goal of  this paper is to show that these estimates 
may be reduced by the geometrical analysis of the correspond- 
ing space group. 

Let G be a space group and F c be one of its fundamental 
regions. There are two important properties of FG: 

(i) there is no isometry g, g 6 G, such that Yi = g "  Yj for any 
two points Yi, Yj E FG, i 5~ j; 

(ii) for any point Yi ~ E", there is a point yj 6 F G such that 
yi = g . yj, g ~ G. 

The application of  all the isometries of  G to F C produces an 
orbit O(G, Fc) ,  which is a space partition because, for each 
point y, y ~ E n, there exists a region F~; and an isometry g from 
G such that y e F~;, F~; = g .  F C. Otherwise, the condition (ii) 
mentioned above is not fulfilled. 

We define a diameter diam F G of fundamental region Fc; as a 
least upper bound for the distances between their points: 

diam F C := sup{d(yi, y)},  Yi, Yj ~ Fc.  

Theorem 1. The uniformity characteristic R of  crystal- 
lographic orbit O(G, x0) is no more than the diameter diam F G 
of  the corresponding space group G: 

R < diam F C. 

Proof Let R > diam Fc,  that is, R = diam F G + ~, ~ > 0. We 
consider a sphere S(y, R) in E". For any centre y of  the sphere 
S(y, R), there exists a fundamental region F~;, F~; = g - F  C, 
g 6 G ,  such that y 6 F ~ ; .  Since R > d i a m F  c:=~ R > 
diam F~; =¢, F~; C S(y, R). That is, the sphere S(y, R) contains 
in the interior at least one fundamental region F~; from the orbit 
O(G, Fc)  and therefore it contains inside at least one point xk 
from any orbit O(G, x0). Hence, R > d(x k , y) for any y, which is 
in contradiction with condition (ii) of  definition 3. For R = 
diam F c (or R < diam Fc),  we can choose y and x k such that 
d(xk,y ) = diam F C [d(xk,y ) < diam Fc]  and therefore it may 
appear that the sphere S(y, R) is empty with respect to the points 
from O(G, x0). The theorem is proved. 

The uniformity characteristic Rm~ x of  each cubic space group 
in E 3 is determined relative to the value of  the parameter a of 
the cubic lattice. The fundamental regions for cubic groups 
were found by Koch & Fischer (1974). These types are shown 
in Fig. 1 in which their diameters are drawn as thick lines. The 
designations of  Fc; types are taken from Koch & Fischer (1974). 
Near each vertex of FG, its coordinates are indicated as integers 
n, n x a/8.  The lrngths of  d i a m F  G a r e  given in Table. 1. It 
must be noted that the fundamental regions 4/4/a,  4 /4 /d ,  
5 /5 /c  and 8/6/a  may have different coordinates of  the same 
comers for different space groups. For these types of Fc;, the 
second variant of  vertices is given in square brackets and 
denoted by * in Fig. 1 and Table 1. For most cubic groups, 
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Koch & Fischer (1974) determined different possible variants of  
F c to be chosen. In Table 1, the upper bounds Rma x for R values 
are given, which are calculated from the minimal diam F C. If 
theorem 1 gives an estimate of  R that is greater than R£ for a 
single lattice, in Table 1 the latter is given. 

It can be seen from Table 1 that only for 15 cubic space 
groups the upper bounds Rmax determined from theorem 1 are 
smaller than R£. The minimal bounds Rma x are obtained for 

space groups Ia3d [Rma x = a31/2/(4 × 21/2)], Fd3c [Rma x = 
a/(2 × 21/2)] and Fm3c (Rma x : a31/2/4). The following values 
are for a single F lattice (Rma x : a/2) and for a single I lattice 
(Rma x : a51/2/4). The maximal Rma x is for a single P lattice 
(Rma x : a31/2/2). 

The upper bounds Rma x for R values of  O(G, x0) are exploited 
in the theory of  Dirichlet domain partitions on crystallographic 
orbits (Engel, 1986). For this purpose, the R characteristics for 
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Fig. 1. Fundamental regions of the cubic space groups with diameters drawn as thick lines. 
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Table 1. Fundamental regions F o, their diameters and the upper bounds R,,~ for R values of the crystallographic orbits of cubic 
space groups 

Space group F a diam F a × a Rma x × a Space group F a diam Fc, x a Rma x × a 
P23 4/4/d 21/2 31/2/2 P4132 6/6/a (11)1/2/4 (11)1/2/4 
F23 10/8/a 1/2 1/2 14132 7/7/a 31/2/(2 × 2 I/2) 51/2/4 

5/5/b 1/21/2 
I23 4/4/a 1 51/2/4 P43m 4/4/a* l/2 31/2/2 

5/5/c 31/2/2 
8/6/a 1/21/2 

P213 7/8/a (11)1/2/4 (11)1/2/4 F~13m 4/4/b 1/2 1/2 
1213 5/5/c 31/2/2 51/2/4 143m 4/4/c 31/2/2 51/2/4 

5/5/b 1/21/2 
Pm3 5/5/c 31/2/2 31/2/2 P43n 5/5/c 31/2/2 1/21/2 

8/6/a 1/21/2 
Pn3 4/4/a 1 1/21/2 F43c 4/4/b 1/2 1/2 

8/6/a 1/2 I/2 4/4/d* 1/21/2 
Fm3 4/4/d* 1/21/2 1/2 I43d 10/8/a 1/2 1/2 
Fd3 4/4/b 1/2 1/2 Pm3m 4/4/c 31/2/2 3 I/2/2 

5/5/d 1/2 
Ira3 4/4/c 31/2/2 51/2/4 Pn3n 4/4/c 31/2/2 1/2 I/2 

5/5/a 1/21/2 5/5/a 1/21/2 
5/5/b 1/21/2 

Pa3 5/5/c 31/2/2 1/21/2 Pm3n 5/5/a 1/2 I/2 1/2 I/2 
8/6/a 1/21/2 

la3 5/5/a 1/21/2 1/2 Pn3m 5/5/b 1/21/2 1/21/2 
lO/8/a 1/2 

P432 4/4/a 1/2 31/2/2 Fm3m 4/4/a* 1/2 1/2 
5/5/c 31/2/2 

P4232 8/6/a 1/21/2 1/21/2 Fm3c 4/4/a* 1/2 31/2/4 
5/5/c* 31/2/4 

F432 4/4/b 1/2 1/2 Fd3m 4/4/e 1/2 1/2 
4/4/d* 1/21/2 

F4132 5/5/d 1/2 !/2 Fd3c 4/4/e 1/2 1/(2 x 21/2) 
8/6/a* 1/(2 x 21/2) 

1432 5/5/a 1/21/2 51/2/4 lm3m 4/4/d* 1/21/2 51/2/4 
5/5/b 1/21/2 

P4332 6/6/a (11)1/2/4 (11)1/2/4 la3d 9/9/a 31/2/(4 x 21/2) 31/2/(4 x 21/2) 

single lattices are usually used. The use of  smaller Rm~x may be 
favourable to obtain new theoretical and experimental results. 
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